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Background

I. Cancer ranks the leading cause of death worldwide and has become one of the five 
most common diseases in China and developing or developed countries.

II. In China, 55 people die of cancer in every 10 minutes.

III. There were an estimated 19,292,789 new cases and 9,958,133 cancer deaths 
worldwide in 2020. (excluding nonmelanoma, skin cancer, and basal cell carcinoma)

IV. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to 
occur in the United States.

V. Accurately diagnosing and prognosis the cancer is of paramount clinical importance.
[1] C. Xia et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese Medical Journal, 2022.

[2] F. Bray et al. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021.

[3] H. Sung et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A 

Cancer Journal for Clinicians, 2021. 

[4] R. L. Siegel et al. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 2023. 
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Background

F. Zhou et al. Cross-Modal Translation and Alignment for Survival Analysis. ICCV, 2023.

I. Survival analysis is a crucial topic in clinical research, which aims to predict the time 
elapsed from a known origin to an event of interest, such as death, relapse of 
disease, and development of an adverse reaction.

II. Traditionally, survival analysis relies on short term clinical indicators and long-term 
follow-up reports which are time-consuming and impractical in clinical applications.

III. Recently, deep learning based medical image analysis is unfolding its infinity power.

IV. While current deep learning-based survival outcome prediction techniques are 
single-modality, pathology or genomics alone, which inevitably reduce their 
potential to accurately predict patient prognosis.

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Challenges

TCGA: The Cancer Genome Atlas. [GDC Data Portal]
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Challenges

—  The absence of spatially corresponding relationship

3D PathologyPathological ImageGenomics

A. H. Song et al. Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples. arXiv Preprint, 2023. 

https://www.med.unc.edu/bric/ideagroup
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Challenges

—  SOTAs struggle to capture the explicit interactions
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⚫ Current SOTA methods are almost using early, late, 
intermediate multimodal feature fusion strategies 
which cannot fully exploit the crucial interactions 
between histopathology feature and genomic data.

⚫ Some guided-fusion based approaches are solely 
using the genomic data as the guidance to integrate 
multimodal pathomic features.

⚫ However, the gigapixel WSIs encompass abundant 
crucial information including cell appearance, tumor 
microenvironment (TME), geometrical characteristics.

⚫ Therefore, we designed a novel framework to capture 
the genotype-phenotype interactions by making these 
two modalities' data guide each other mutually.

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Methodology

— Mutual-Guided Cross-Modality Transformer

Histology Feature Extraction from Gigapixel WSI
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Methodology

— Problem Formulation

⚫ We denote the input WSI as 𝕏𝑖, the feature vector of genomic attributes with the WSI as 𝔾𝑖, the overall survival 
time (in months) as 𝑡𝑖 ∈ ℝ+, and the right uncensorship status (death observed) as 𝑐𝑖 ∈ {0,1}.

⚫ Therefore, we can represent the observations for all patient samples as a quadruple {𝕏𝑖, 𝔾𝑖, 𝑡𝑖, 𝑐𝑖}𝑖=1
𝑁 .

⚫ The main objective is to develop and optimize 𝒯(∙) for integrating 𝕏𝑖 and 𝔾𝑖 to estimate the hazard function:

𝑡𝑖 = 𝒯 𝕏𝑖 , 𝔾𝑖 = ∅ 𝜉 𝜌 𝑓 𝑥1 , 𝑓 𝑥2 , ⋯ , 𝑓 𝑥𝑁𝑖
, 𝔾𝑖

⚫ 𝑓(∙) is an instance-level encoder that processes features for each instance independently
⚫ 𝜌(∙) is the method for multimodal pathomic features integration
⚫ 𝜉(∙) is a permutation-invariant instance aggregator which aggregate and pools the features to a bag-level embedding
⚫ ∅(∙) is a bag-level classifier to make final survival outcome predictions

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Methodology

— Histopathology Feature Extraction

MY Lu et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nature biomedical engineering, 2021. 

a) For input WSI 𝕏𝑖, CLAM repository is employed for automated tissue segmentation.

b) Then we extract 256×256 image patches {𝑥𝑘}𝑘=1
𝑁𝑖  without spatial overlapping at the 20× magnification.

c) We further utilize an ImageNet-pretrained ResNet-50 to generate a 1024-dim feature embedding 𝐡𝑘 ∈ ℝ1024.

d) Finally, we assemble the feature embeddings into a WSI-level bag representation ℋ𝑖 ∈ ℝ1024×𝑁𝑖 . 
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Methodology

— Genomic Feature Embedding

⚫ We select transcript abundance (bulk RNA-Seq), gene mutation status, copy number variation as the input genomics.

⚫ These 1 × 1 measurements exhibit a high-dimensional low-sample (HDLSS) nature which leads to overfitting problem.

⚫ Therefore, we leverage the Self-Normalizing Neural Network (SNN) to formulate the genomic feature embedding.

⚫ We further aggregate and structure the genomic embeddings based on 𝐒 related biological functional impacts.

⚫ Finally, we can generate the bag-level genomic feature embedding as 𝒢𝑖 ∈ ℝ1024×S.

G. Klambauer et al. Self-normalizing neural networks. NeurIPS, 2017. 
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Methodology

— Mutual-Guided Cross-Modality Attention

𝓗
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A. Vaswani et al. Attention is all you need. NeurIPS, 2017. 
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⚫ Leverage the cross-attention module to explore the intrinsic 
cross-modality correlations and comprehensive interactions.

⚫ The remaining architectures and calculation are analogous 
to the Multi-Head Self-Attention (MHSA) within vanilla 
transformer encoder layer.

genomic-guided histopathology 
feature embedding
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Methodology

Algorithm 1: The proposed MGCT framework

Input:

I. WSI bag embedding ℋ𝑖 ∈ ℝ1024×𝑁𝑖.
II. Genomic bag embedding 𝒢𝑖 ∈ ℝ1024×S.
III. # MGCT layers in two multimodal feature integration stages, S1 and S2.

1: for s1 = 1 to S1 do

2:     ℛ𝐺→𝐻
′′ ⟵ 𝐌𝐆𝐂𝐓-𝐋𝐚𝐲𝐞𝐫(𝒢𝑖, ℋ𝑖, ℋ𝑖)

        ℛ𝐻→𝐺
′′ ⟵ 𝐌𝐆𝐂𝐓−𝐋𝐚𝐲𝐞𝐫(ℋ𝑖, 𝒢𝑖, 𝒢𝑖)

3: end for

4: ℛ𝐹1
⟵ 𝐂𝐨𝐧𝐜𝐚𝐭𝐞𝐧𝐚𝐭𝐞 ℛ𝐺→𝐻

′′ , ℛ𝐻→𝐺
′′

5: for s2 = 1 to S2 do 

6:     ℛ𝐹1→𝐻
′′ ⟵ 𝐌𝐆𝐂𝐓-𝐋𝐚𝐲𝐞𝐫(ℛ𝐹1

, ℋ𝑖, ℋ𝑖)

        ℛ𝐻→𝐹1

′′ ⟵ 𝐌𝐆𝐂𝐓−𝐋𝐚𝐲𝐞𝐫(ℋ𝑖, ℛ𝐹1
, ℛ𝐹1

)

7: end for

8: ℛFinal ⟵ 𝐂𝐨𝐧𝐜𝐚𝐭𝐞𝐧𝐚𝐭𝐞 ℛ𝐹1→𝐻
′′ , ℛ𝐻→𝐹1

′′

Return final multimodal feature embedding ℛFinal

𝐌𝐆𝐂𝐀 𝒢𝑖, ℋ𝑖, ℋ𝑖 = 𝐒𝐨𝐟𝐭𝐦𝐚𝐱
Q ∙ K⊺

𝑑𝑘

= 𝐒𝐨𝐟𝐭𝐦𝐚𝐱
W𝑞 ∙ 𝒢𝑖 ∙ ℋ𝑖

⊺ ∙ W𝑘
⊺

𝑑𝑘

∙ W𝑣 ∙ ℋ𝑖 ⟶ ℛ𝐺→𝐻

ℛ𝐺→𝐻
′ = 𝐀𝐭𝐭𝐧𝐏𝐨𝐨𝐥 

𝑖=1

𝑁

𝛼𝑖 ∙ ℛ𝐺→𝐻 𝑤ℎ𝑒𝑟𝑒

ℛ𝐺→𝐻
′′ = 𝜁 𝐌𝐋𝐏 ℛ𝐺→𝐻

′ W𝐌𝐋𝐏 ∙ W𝜁

𝛼𝑖 =
exp{W(𝐭𝐚𝐧𝐡(V ∙ ℛ𝑖

⊺) ⊙ 𝐬𝐢𝐠𝐦(U ∙ ℛ𝑖
⊺))}

σ𝑗=1
𝑁 exp{W(𝐭𝐚𝐧𝐡(V ∙ ℛ𝑖

⊺) ⊙ 𝐬𝐢𝐠𝐦(U ∙ ℛ𝑖
⊺))}

— Mutual-Guided Cross-Modality Transformer

⚫ The procedure for MGCT layer calculation:

𝜁(∙) is a permutation-invariant instance aggregator 

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Experiments

— Datasets

Cancer # Cases # WSIs # Patches Censorship

BLCA 373 437 7,648,953 0.547

BRCA 957 1,023 12,306,155 0.860

LUAD 453 516 6,717.757 0.651

GBMLGG 569 1,042 12,742,037 0.766

UCEC 480 539 9,136,545 0.844

Overall 2,832 3,557 48,551,447 0.734

⚫ Five benchmarks were used for model evaluation
⚫ BLCA: Bladder Urothelial Carcinoma 
⚫ BRCA: Breast Invasive Carcinoma
⚫ LUAD: Lung Adenocarcinoma.
⚫ GBMLGG: Glioblastoma Multiforme & Brain Lower Grade Glioma
⚫ UCEC: Uterine Corpus Endometrial Carcinoma

a) Tumor Suppression
b) Oncogenesis
c) Protein Kinases
d) Cellular Differentiation
e) Transcription
f) Cytokines and Growth

A. Subramanian et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 2005. 

Genomic profiles are grouped by:

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Experiments

— Evaluation Metrics

— Implementation Details

⚫ 5-fold Monte Carlo cross-validation for each cancer type was used for model evaluation.

⚫ Concordance index (C-index) values were employed to measure the predictive ability of the model.

⚫ Kaplan-Meier curves (KM curve) were leveraged to visually represent the quality of patient stratification.

⚫ Log-rank test was introduced to determine the statistical significance of patient stratification.

⚫ MGCT is trained on a workstation equipped with an NVIDIA Quadro GV100 GPU for 20 epochs (about 7.5 hours).

⚫ Adam optimization with learning rate of 2e-4 and weight decay of 1e-5.

⚫ Batch size is 1 (due to samples having varying bag sizes) and 32 gradient accumulation steps.

⚫ Our related models and scripts will be publicly made available ASAP at https://github.com/lmxmercy/MGCT.

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
https://github.com/lmxmercy/MGCT
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Experiments

— Baselines

⚫ Unimodal Baselines:

⚫ Multimodal Baselines:

a) Genomic Only: MLP, SNN, DeepSurv, CoxRegression

b) Pathology Only: Deep Sets, Attention MIL, CLAM, DeepAttnMISL, Patch-GCN

c) Enhanced MILs with concatenation and bilinear pooling as multimodal baselines

d) Current State-of-the-Art methods: PORPOISE, MCAT

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Experiments

— Concordance index Comparison

Methods BLCA BRCA LUAD GBMLGG UCEC Overall

SNN 0.541 ± 0.016 0.466 ± 0.058 0.539 ± 0.069 0.598 ± 0.054 0.493 ± 0.096 0.527

DeepSurv 0.567 ± 0.049 0.598 ± 0.054 0.608 ± 0.026 0.810 ± 0.020 0.577 ± 0.058 0.632

CoxRegression 0.591 ± 0.041 0.568 ± 0.077 0.574 ± 0.042 0.705 ± 0.014 0.464 ± 0.099 0.580

Deep Sets 0.500 ± 0.000 0.500 ± 0.000 0.496 ± 0.008 0.498 ± 0.014 0.500 ± 0.000 0.499

CLAM 0.565 ± 0.027 0.578 ± 0.032 0.582 ± 0.072 0.776 ± 0.034 0.609 ± 0.082 0.622

DeepAttnMISL 0.504 ± 0.042 0.524 ± 0.043 0.548 ± 0.050 0.734 ± 0.029 0.597 ± 0.059 0.581

Patch-GCN 0.560 ± 0.034 0.580 ± 0.025 0.585 ± 0.012 0.824 ± 0.024 0.629 ± 0.052 0.636

Attention MIL (Concat) 0.605 ± 0.045 0.551 ± 0.077 0.563 ± 0.050 0.816 ± 0.011 0.614 ± 0.052 0.630

DeepAttnMISL (Concat) 0.611 ± 0.049 0.545 ± 0.071 0.595 ± 0.061 0.805 ± 0.014 0.615 ± 0.020 0.634

PORPOISE 0.613 ± 0.021 0.563 ± 0.056 0.621 ± 0.045 0.818 ± 0.011 0.622 ± 0.061 0.647

MCAT 0.624 ± 0.034 0.580 ± 0.069 0.620 ± 0.032 0.817 ± 0.021 0.622 ± 0.019 0.653

MGCT (Ours) 0.640 ± 0.039 0.608 ± 0.026 0.596 ± 0.078 0.827 ± 0.024 0.645 ± 0.039 0.663
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Experiments
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BLCA BRCA LUAD GBMLGG UCEC

— Patient Stratification: Kaplan-Meier Survival Curves

https://www.med.unc.edu/bric/ideagroup
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Experiments

— Ablation study on designed components

Designs in MGCT TCGA-BLCA TCGA-UCEC

Deep Fusion MGCA GAP Feedforward C-index ↑ AUC ↑ C-index ↑ AUC ↑

A 0.499 ± 0.002 0.499 ± 0.002 0.499 ± 0.002 0.499 ± 0.002

B √ 0.535 ± 0.038 0.532 ± 0.045 0.541 ± 0.063 0.558 ± 0.034 

C √ √ 0.590 ± 0.045 0.621 ± 0.072 0.608 ± 0.062 0.627 ± 0.071

D √ √ √ 0.601 ± 0.047 0.621 ± 0.072 0.608 ± 0.062 0.627 ± 0.071

E √ √ √ √ 0.640 ± 0.039 0.679 ± 0.039 0.645 ± 0.039 0.660 ± 0.039

⚫ Test on TCGA-BLCA and TCGA-UCEC two benchmarks.
⚫ Deep Fusion: stack two parallel MGCT layers in depth. 
⚫ MGCA: mutual-guided cross-modality attention.
⚫ GAP: gated-attention pooling operation in MGCT layer. 
⚫ Feedforward: position-wise feed-forward network in MGCT layer.

Model

https://www.med.unc.edu/bric/ideagroup
http://bric.unc.edu/
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Experiments

— Ablation study on genomic feature embedding method & #MGCT layers

⚫ Test on TCGA-BLCA, TCGA-GBMLGG, and TCGA-UCEC three benchmarks.

https://www.med.unc.edu/bric/ideagroup
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