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Background

|.  Cancer ranks the leading cause of death worldwide and has become one of the five
most common diseases in China and developing or developed countries.

Il. In China, 55 people die of cancer in every 10 minutes.

IIl. There were an estimated 19,292,789 new cases and 9,958,133 cancer deaths
worldwide in 2020. (excluding nonmelanoma, skin cancer, and basal cell carcinoma)

IV. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to
occur in the United States.

V. Accurately diagnosing and prognosis the cancer is of paramount clinical importance.

[1] C. Xia et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese Medical Journal, 2022.

[2] F. Bray et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021.

[3] H. Sung et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A
Cancer Journal for Clinicians, 2021.

[4] R. L. Siegel et al. Cancer statistics, 2023. CA: A Cancer Journal for Clinicigs, PAVVER
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Background

|.  Survival analysis is a crucial topic in clinical research, which aims to predict the time
elapsed from a known origin to an event of interest, such as death, relapse of
disease, and development of an adverse reaction.

Il. Traditionally, survival analysis relies on short term clinical indicators and long-term
follow-up reports which are time-consuming and impractical in clinical applications.

Ill. Recently, deep learning based medical image analysis is unfolding its infinity power.
IV. While current deep learning-based survival outcome prediction techniques are

single-modality, pathology or genomics alone, which inevitably reduce their
potential to accurately predict patient prognosis.

F. Zhou et al. Cross-Modal Translation and Alignment for Survival Analysis. IgCV, 2023.
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Challenges

— The enormous heterogeneity of gigapixel WSlIs
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Challenges

— The absence of spatially corresponding relationship

Genomics Pathological Image 3D Pathology

A. H. Song et al. Weakly Supervised Al for Efficient Analysis of 3D Pathology Samples. arXiv Preprint, 2023.
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Challenges

— SOTAs struggle to capture the explicit interactions
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Methodology

— Mutual-Guided Cross-Modality Transformer

Histology Feature Extraction from Gigapixel WSI
B Pretrained ResNet50;;
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Methodology

— Problem Formulation

® We denote the input WSI as X;, the feature vector of genomic attributes with the WSI as G;, the overall survival
time (in months) as t; € R*, and the right uncensorship status (death observed) as ¢; € {0,1}.

® Therefore, we can represent the observations for all patient samples as a quadruple {X;, G;, t;, ci}ﬁvzl.

® The main objective is to develop and optimize 7 (+) for integrating X; and G; to estimate the hazard function:

=T G = 0 (¢ (p([f (), F), -, (o)) 1))

f(+) isaninstance-level encoder that processes features for each instance independently

p(+) is the method for multimodal pathomic features integration

¢(+) isa permutation-invariant instance aggregator which aggregate and pools the features to a bag-level embedding
@(-) is a bag-level classifier to make final survival outcome predictions

S
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Methodology

— Histopathology Feature Extraction
a) For input WSI X;, CLAM repository is employed for automated tissue segmentation.
b) Then we extract 256256 image patches {xk}l,gizl without spatial overlapping at the 20X magnification.
c) We further utilize an ImageNet-pretrained ResNet-50 to generate a 1024-dim feature embedding h;, € R10%4,

d) Finally, we assemble the feature embeddings into a WSI-level bag representation #; € R1V24*Ni,

Pretrained ResNet50
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Tissue Segmentation i | ing ARE Feature Embedding

MY Lu et al. Data-efficient and weakly supervised computational pathology on whole-slide images. Nature biomedical engineering, 2021.
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Methodology

— Genomic Feature Embedding

® We select transcript abundance (bulk RNA-Seq), gene mutation status, copy number variation as the input genomics.
® These 1 X1 measurements exhibit a high-dimensional low-sample (HDLSS) nature which leads to overfitting problem.
® Therefore, we leverage the Self-Normalizing Neural Network (SNN) to formulate the genomic feature embedding.
® \We further aggregate and structure the genomic embeddings based on S related biological functional impacts.

® Finally, we can generate the bag-level genomic feature embedding as G; € R1024%5,

G. Klambauer et al. Self-normalizing neural networks. NeurlPS, 2017.
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Methodology

— Mutual-Guided Cross-Modality Attention

Vi
j’d
Softmax(——
Vg
I K genomic-guided histopathology
feature embedding
d . : . . RG_)H
0 MGCA Score ® |everage the cross-attention module to explore the intrinsic
g cross-modality correlations and comprehensive interactions.

® The remaining architectures and calculation are analogous
9 to the Multi-Head Self-Attention (MHSA) within vanilla

A. Vaswani et al. Attention is all you need. NeurlPS, 2017. transformer encoder Iayer-

11
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Methodology

— Mutual-Guided Cross-Modality Transformer -
Algorithm 1: The proposed MGCT framework

® The procedure for MGCT layer calculation: Input:

l. WSl bag embedding #; € R1024*Ni,
KT Il.  Genomic bag embedding G; € R1024%S,
[ll.  # MGCT layers in two multimodal feature integration stages, S; and S,.

\/dk 1:fors; =1toS; do

MGCA(G;, H;, H;) = Softmax

Wy - Gi - H - Wy

= Softmax W, - H; — Reopy 2: 72,’(,,5_,H «— MGCT-Layer(G;, H;, H;)
Vdk Ri-g < MGCT-Layer(3;, G, Gi)
N 3: end for
R¢_.y = AttnPool z a; |- Reoy where 4: Ry, — (RY_ i R

exp{W(tanhF/l- R © sigm(U - R)))}

T E) exp(W(tanh(V - R O sigm(U - RD)]

5:fors, =1to S, do

6: Rp_y < MGCT-Layer(Rg, H;, H;)
R;}_,Fl < MGCT-Layer(H;, Rr,, Rr,)
7: end for
Ren = (MLP(Rop)Wypip) - W
8: RFinal — (:Rgl—)Hl :R;-;%Fl)

() isa permutation-invariant instance aggregator Return final multimodal feature embedding Rginal

| B
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Experiments

— Datasets Genomic profiles are grouped by:
® Five benchmarks were used for model evaluation a) Tumor Suppression

® BLCA: Bladder Urothelial Carcinoma b) Oncogenesis

® BRCA: Breast Invasive Carcinoma c) Protein Kinases

® LUAD: Lung Adenocarcinoma. d) Cellular Differentiation

® GBMLGG: Glioblastoma Multiforme & Brain Lower Grade Glioma e) Transcription

® UCEC: Uterine Corpus Endometrial Carcinoma f) Cytokines and Growth

View Gene Families

Cancer # Cases # WSIs # Patches Censorship

BLCA 373 437 7,648,953 0.547
BRCA 957 1,023 12,306,155 0.860
LUAD 453 516 6,717.757 0.651
GBMLGG 569 1,042 12,742,037 0.766
UCEC 480 539 9,136,545 0.844
Overall 0.734

A. Subramanian et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 2005.

| B
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Experiments

— Evaluation Metrics

® 5-fold Monte Carlo cross-validation for each cancer type was used for model evaluation.
® Concordance index (C-index) values were employed to measure the predictive ability of the model.
® Kaplan-Meier curves (KM curve) were leveraged to visually represent the quality of patient stratification.

® Log-rank test was introduced to determine the statistical significance of patient stratification.

— Implementation Details

® MGCT is trained on a workstation equipped with an NVIDIA Quadro GV100 GPU for 20 epochs (about 7.5 hours).
® Adam optimization with learning rate of 2e-4 and weight decay of 1e-5.
® Batch size is 1 (due to samples having varying bag sizes) and 32 gradient accumulation steps.

® Ourrelated models and scripts will be publicly made available ASAP at
14
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Experiments

— Baselines

® Unimodal Baselines:

a) Genomic Only: MLP, SNN, DeepSurv, CoxRegression

b) Pathology Only: Deep Sets, Attention MIL, CLAM, DeepAttnMISL, Patch-GCN

® Multimodal Baselines:

c) Enhanced MiILs with concatenation and bilinear pooling as multimodal baselines

d) Current State-of-the-Art methods: PORPOISE, MCAT

| B
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Experiments

— Concordance index Comparison

Methods BLCA BRCA LUAD GBMLGG UCEC Overall
o | SNN 0.541 + 0.016 0.466 +0.058 0.539+0.069 0.598 +0.054 0.493 +0.096 0.527
E DeepSurv 0.567 + 0.049 0.598 +0.054 0.608 +0.026 0.810+ 0.020 0.577 +=0.058 0.632
© CoxRegression 0.591 + 0.041 0.568 +0.077 0.574+0.042 0.705+ 0.014 0.464 +0.099 0.580
o Deep Sets 0.500 + 0.000 0.500 + 0.000 0.496 +0.008 0.498 + 0.014 0.500+ 0.000 0.499
%D CLAM 0.565 + 0.027 0.578 +£0.032 0.582 +0.072 0.776 +0.034 0.609 +0.082 0.622
g DeepAttnMISL 0.504 + 0.042 0.524 +0.043 0.548 +0.050 0.734+0.029 0.597+0.059 0.581
Patch-GCN 0.560 + 0.034 0.580 +0.025 0.585+0.012 0.824 +0.024 0.629+0.052 0.636
Attention MIL (Concat) | 0.605 + 0.045 0.551 +0.077 0.563 £0.050 0.816 +0.011 0.614 +0.052 0.630
g DeepAttnMISL (Concat) | 0.611 + 0.049 0.545 4 0.071 0.595+ 0.061 0.805* 0.014 0.615+ 0.020 0.634
é PORPOISE 0.613 + 0.021 0.563 + 0.056 0.818 + 0.011 0.622 +0.061 0.647
g MCAT 0.624 + 0.034 0.580 +0.069 0.620+ 0.032 0.817+0.021 0.622 +0.019 0.653
0.596 + 0.078

16
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Experiments

— Patient Stratification: Kaplan-Meier Survival Curves
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Experiments

— Ablation study on designed components

® Test on TCGA-BLCA and TCGA-UCEC two benchmarks.
® Deep Fusion: stack two parallel MGCT layers in depth.

® MGCA: mutual-guided cross-modality attention.

® GAP: gated-attention pooling operation in MGCT layer.

® Feedforward: position-wise feed-forward network in MGCT layer.

ode Designs in MGCT TCGA-BLCA TCGA-UCEC
Deep Fusion MGCA  GAP  Feedforward C-index T AUC T C-index T AUC T
A 0.499 4+ 0.002 0.499 + 0.002 0.499 4+ 0.002 0.499 + 0.002
B N 0.535+0.038 0.532+0.045 0.541+ 0.063 0.558 + 0.034
C v v 0.590 + 0.045 0.621+0.072 0.608 4+ 0.062 0.627 &+ 0.071
b) v v v 0.601 +0.047 0.621+0.072 0.608+ 0.062 0.627 + 0.071
E J v J

18
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Experiments

— Ablation study on genomic feature embedding method & #MGCT layers

® Test on TCGA-BLCA, TCGA-GBMLGG, and TCGA-UCEC three benchmarks.

Survival Analysis on TCGA-BLCA Dataset

Feedforward Feedforward C-Index
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